Conversion of D-Fructose to 5-(Hydroxymethyl)furfural: Evaluating Batch and Continuous Flow conditions by Design of Experiments and In-line FT-IR Monitoring.

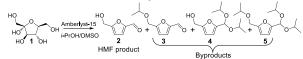
Renan Galaverna (PG)¹, Julio C. Pastre (PQ)^{1*}.

¹Institute of Chemistry, University of Campinas - UNICAMP, PO Box 6154 - Zip Code 13083-970, Campinas, SP, Brazil.

*e-mail: juliopastre@iqm.unicamp.br.

Keywords: Green Chemistry, 5-(Hydroxymethyl)furfural, Continuous Flow Chemistry, In-line Monitoring, Design of experiments.

Abstract

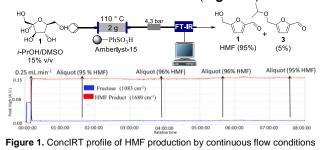

Conversion of Fructose to HMF was evaluated in batch and continuous flow conditions using Design of Experiments and in-line FT-IR monitoring.

Introduction

New bio-based chemicals and processes have motivated both academic and industrial segment in the last decade. In particular, the production furfural its derivatives of and such as 5-(Hydroxymethyl)furfural (HMF) has aroused and encouraged several groups due its potential conversion to feedstocks for bulk chemicals, polymers, solvents, and fuels.¹ Furthermore, HMF was listed as one of the 10 most important compounds that can be obtained from the biomass by the US Department of Energy².

Results and Discussion

Initially, the dehydration of Fructose (1) to HMF (2) was evaluated in batch using solid acid-catalyst Amberlyst-15 in alcohol/DMSO as solvent system. Among the alcohols evaluated (MeOH, EtOH, *i*-PrOH, and *t*-BuOH), *i*-PrOH afforded better selectivities and yields for HMF synthesis. However, since three different by-products could be formed when *i*-PrOH is used as solvent (**Scheme 1**), these compounds were synthetized from HMF in order to address their formation by ¹H NMR and GC-MS.



Scheme 1. Dehydration of Fructose to HMF and its potential by-products.

Having these compounds in hand, batch conditions were evaluated by DOE using *i*-PrOH/DMSO as solvent. In a full factorial design, temperature, time, catalyst loading, and amount of DMSO were the factors evaluated by the Design-Expert[®] software. Selected results are shown in **Table 1**. In summary, the temperature seems to play the major influence in this process, since the yield increased from 48 to 71% at a higher temperature. In Addition, the *i*-propyl ether **3** was the only by-product detected by ¹H NMR and GC-MS analysis of the crude reaction. *39[°] Reunião Anual da Sociedade Brasileira de Química: Criar e Empreeder*

Temperature (°C)	DMSO (% v/v)	Catalyst (mol%)	Time (min)	HMF ^a (%)	3 ^{a,b} (%)
120	15	30	240	71	4.0
80	15	10	60	10	0.4
120	15	10	60	55	0.7

We next turned our attention to continuous flow conditions. Temperature and residence time were evaluated in a full factorial design and temperature again showed the major contribution. For this process, HMF could be obtained in up to 95% yield in a short residence time (only 11 minutes). In order to demonstrate a long-time production of HMF and also to evaluate the recyclability of the acid resin, a continuous experiment was performed using in-line FT-IR monitoring. Gratifyingly, no process deviation was observed during this time and selectivity/yield maintained stable over 24 hours (**Figure 1**).

Conclusion

In summary, an effective process for HMF production from Fructose was developed using *i*-PrOH/DMSO as solvent and Amberlyst-15 in a fixed-bed reactor. The yield increased from 71% in batch to 95% under continuous flow conditions and the system was stable over 24 hours, which could be confirmed by in-line FT-IR monitoring.

Acknowledgments

We thank FAPESP (2014/26378-2), CNPQ and CAPES for financial support.

¹ Wang, T.; Noltea, M. W. and Shanks, B. H. Green Chem., 2014, 16, 548.

² Werpy, T. and G. Petersen. Top Value Added Chemicals from Biomass. NREL/TP-510-35523. National Renewable Energy Laboratory, Golden, CO, 2004. Empreender